
Board Game Assignment

Introduction to Artificial Intelligence

Troels Lund
DTU Diplom

s161791

Mads Stege
DTU Compute

s165243

Niklas Thielemann
DTU Diplom

s145032

Technical University of Denmark
DTU Compute

Friday, the 13th of April, 2020 - 20:00

Number of pages (Including appendix): 10

Courses: 02180



Content
0.1 GitHub Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Game Rules 1

2 Chosen Game 1

3 State Space 1

4 Game Elements 2

5 Game Representation 2

6 Methods & Algorithms 3

7 Heuristics or Evaluation Functions 4
7.1 Winner Or Loser Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
7.2 Maximise Point Difference Heuristic . . . . . . . . . . . . . . . . . . . . . . . 4
7.3 Sum Difference Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
7.4 Evaluation of heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

8 Parameter Adjustment 5
8.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

8.1.1 Algorithm variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8.1.2 Search depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8.1.3 Initial turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8.1.4 Value of paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

9 Comments & Conclusion 7

10 Appendix 9
10.1 Gametree model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Bibliography 10



Contributions
During this project, the entirety of the group has either been directly responsible for a given
matter, or been on the sidelines as a valuable discussion partner. With that being said, the
primary contributors of the Report are as follows:

Section name Section number Responsible
Game Rules 1 Mads

Chosen Game 2 Mads
State Space 3 Niklas

Game Elements 4 Niklas
Game Representation 5 Niklas

Methods & Algorithms 6 Troels
Heuristics or Evaluation Functions 7 Troels

Parameter Adjustment 8 Mads
Comments & Conclusion 9 Everyone

(Press a section Name or number to navigate to it directly.)

Everyone in the group has contributed to the overall code base in equal measures.

0.1 GitHub Repository
The project can be viewed online at:

https://github.com/trolund/KalahaAI



1 Game Rules
For the purpose of this report, the game will employ the standard Kalaha rules, as described in
the official Endless Games instruction manual (2015) handed out on the 2nd of March, 2019.

The implemented board in game will follow a (6,4) setup. The notation, (6,4), describes the
initial game state in terms of number of pits for each player and the starting number of stones
in each pit.

There will be no changes, alterations, or simplifications to the rules and game setup, as de-
scribed from the official guide[1].

2 Chosen Game
The classic Kalaha game, sometimes referred to as "Mancala" depending on the region, is an
activity involving two players in a competitive non-zero-sum game setting. Kalaha is a turn-
based game, where both players have perfect information (full observability) of the game’s
current state, as shown in figure 1.

Figure 1. Example of a Kalaha game. Source: Endless Games (2015)

Due to the nature of Kalaha, it is a fully deterministic game. Both players may view the
outcome of all game states following the currently active game state. There are no random
elements affecting the course of the game. As such, the AI operating will therefore implement
an algorithm seeking out the best suited states first. Minimax with Alpha-Beta pruning would
be a likely candidate, to help quickly identify the most promising state-node.

It is worth mentioning that Kalaha is solved game, i.e. it is possible to predict the game’s
outcome from the initial state, and who the first player is, assuming both players play perfectly.

3 State Space
The state space is determined by factors, such as number of pits in the game, the number of
stones and which player’s turn it is. In the standard version of Kalaha, there are 12 pits in total
and two Kalahas. There are 48 pieces, and there are only two players. If the number of pits
and Kalahas are defined as ’k’, the number of stones defined as ’s’, then the number of state
spaces excluding the players, would be sk, since any given number of pieces can be at any given
pit/store. The upper bound game state space including players would then be sk ∗p where p are
the number of players.

For the standard version of Kalaha, that would give 4814 ∗2 which is roughly 6, 8∗1023 number
of state spaces.

1



However, most of these state spaces are unreachable from the initial state due to the rules of the
game. Since the stones are evenly split among the pits and players are forced to place stones
in their own Kalahas when passing by, suggests that a pit at most can hold half the possible
stones. In that case, the state space complexity would be calculated as:

sk ∗ (s/2)h ∗ p

where

s = stones, k = kalahas, h = pits and p = players

which when calculated equals to (roughly) 1, 7 ∗ 1020 state spaces

Considering that other rules have not been taken into account, making it harder to stack stones
in pits, implies that the game complexity is even smaller than that. From third party works[2],
they estimate the state space to be in the region of 1.31 ∗ 1013 reachable states, suggesting we
may yet still include a number of unreachable states.

4 Game Elements
The various game elements used in the project is described as below:

• s0 (Initial state) is the initial state, the first state presented to the system. This is depicted
in figure 2. The numbers on the right and left side are the players amount of points, both
of which initially are set to zero. Each pit in the game contains four stones each in s0.

• Player(s) returns which player’s turn it is.

• Actions(s) returns which pits a given player can select for pick up. A pit is only available
for pick up if its amount of stones are greater than zero.

• Results(s, a) will return a state where each pit has been updated, e.g. if the current state
is s0 and the left most southern pit has been selected, then that pit will have zero and the
following four pits will have five stones in the resulting state.

• Terminal-Test(s) returns true if one of the player’s side are completely empty.

• Eval_win_loss(s, p) defines a value of the state s for a player p. The value depends on
the outcome which can either be a win, loss or draw. The player with the most stones
wins.

• Eval_max_dif(s, p) returns a value stating how good the current state s is for player p.
For a max player, the higher result given by the evaluation functions, the better.

• Eval_sum(s, p) returns a value stating how good one player’s boardside is over the
other’s.

5 Game Representation
Game state is represented as an array that contains the values of each pit’s amount of stones
and the Kalahas as well. It also contains a boolean indicating which player’s turn it is.

2



Figure 2. A representation of the game’s initial state

Actions are represented as numbers, where a specific action’s value equals to the chosen pit. If
a player wants to move the pieces from pit number 4, the player will choose action = 31.

Since we have implemented the rule that gives the possibility for player to get an extra turn, it
is important for the A.I to know whether it has reached a min or max node in it’s pathing. By
default the nodes would shift between a min and max node, but since a player can get an extra
turn, it is possible to reach two or more min/max nodes in a row.

If we had discarded that specific rule, the game state could simply have been an array without
the boolean attached to it.

6 Methods & Algorithms
We have chosen to implement a greedy Minimax-based algorithm with alpha-beta pruning for
the agent. The alpha-beta pruning allows the Minimax algorithm to exclude less promising
paths, allowing for a faster exploration of more promising paths.

Since the Minimax algorithm builds a partial game tree, it is necessary to incorporate a max
depth parameter, as it is impractical to do the complete tree search every turn. This especially
holds true, because the program does not utilities the power of multithreading.

The current implementation of the Minimax algorithm has one notable difference. That is the
game state tree does not necessarily contain layers of alternately max and min layer. In Kalaha,
you can earn an extra turn, i.e. the max player having two turns in a row will result in two
layers of maximising the utility value.

One example of the Minimax algorithm’s thought process can be seen in section 10.1, Gametree
model.

As shown in the gametree, the max agent (red) will chose the highest value. Meanwhile, the
min agent (blue) will chose the lowest evaluation value. Since every node potentially has six
children, the tree grows incredibly large, very fast. Therefore, only a small section of a few
selected nodes are drawn. The boldened path shown is the path the agent at this point will try
following, by executing Action 9.

In addition, it is worth mentioning that an algorithm like Monte Carlo tree search could also
have been applied to Kalaha, in which case the evaluation function would be defined by a
stochastic function based on random wins and losses, called Monte Carlo simulation.

1The array is 0-indexed.

3



While Minimax is capable of finding the most valid path, the Monte Carlo tree search algorithm
would have made for a more capable agent.

7 Heuristics or Evaluation Functions
For our game, we have considered a couple of heuristics.They are simple in nature, because the
objective of the game is to have more points in your Kalaha than the opponent’s Kalaha.

7.1 Winner Or Loser Heuristic
The AI has only one heuristic point, that only checks to see if the player is winning - a simple
check whether it has more points than the opponent.

The evaluation of game states therefore becomes binary, because there is only winning or los-
ing. This is despite the fact that there is also a possibility of the players having the same amount
of points.

The evaluation function is therefore implemented so that it will return ’1’ in every state that it
got more points than the opponent, ’-1’ in a losing state and ’0.5’ when the scores are even.

This also means that the AI will choose to move to the node with the most successful sub tree,
i.e. the tree with the most terminal states where it will win. This is regardless of the number of
steps taken or the difference in points between the players.

7.2 Maximise Point Difference Heuristic
Another simple approach is to look at the difference between the opponents points and the
players own points so that the score will be as high as possible for one player and as low as
possible for the opposing player.

This guides the AI towards maximising the amount it wins with, thereby looking like a more
competent agent.

The evaluation function would look like so:

f(n) = player1points − player2points

This approach appears superior, to the Winner Or Loser Heuristic.

7.3 Sum Difference Heuristic
Finally, we have a heuristic, where it takes the sum of one side of the board associated with the
player in action, and subtracts it from the opposing side of the board.

This lets the AI more easily determine whether or not it is heading towards a losing node, letting
it work preemptively to stop this.

4



7.4 Evaluation of heuristics
We have tried to evaluate different heuristics by letting them play 1,000 times against a random
agent, an agent selecting random pits to choose from. The starting player of the game is equally
divided, giving each of them 500 games to play first, and 500 games to play second. The results
are as follows:

Winner/loser Maximise score Sum difference
Win% 75,4 97,5 95,1

As shown, the Maximise point difference heuristic is the best performing, winning 97,5% of
its games. For that reason, this is the heuristic evaluation chosen. None the less, the sug-
gested heuristics are of some level of competence, as they all perform noticeably better than a
completely random agent.

It could be beneficial to use step count as a factor in the evaluation function to increase AI
awareness of the amount of steps needed to arrive by a given state.

Further more, combining heuristics with different focus areas could give the agent a better
change of using the game mechanics to its advantage.

8 Parameter Adjustment
Due to the nature of the implemented algorithms (see section 6, Methods & Algorithms), there
are a number of variables one might tweak to change the behaviour and proficiency of the
AI. As a baseline, the AI interprets moves which puts its own score above its opponent as
favourable. Thus, the variables one might tweak is:

• Algorithm variation
The implemented algorithm comes in two varieties, with or without alpha-beta pruning.
While they both might arrive at the same path with the same level of depth, the algorithm
with alpha-beta will arrive within a much shorter time frame.

• Search depth
The deeper the AI goes into its search tree nodes, the more likely it is to find a favourable
path of actions.

• Initial turn
Whosoever starts the game has an monumental advantage over their opponent. In fact,
it is mathematically impossible for the first player to lose a game of Kalaha2. In a 6-pit
setup[3], no matter the initial amount of stones in the various pits, the player with the
initial draw wins.

• Value of paths
The algorithm considers a number of paths available to it, choosing the path returning
the highest amount of stones in its Kalaha. However, a more lenient AI opponent will
choose a less favourable path (while still working in its own interest). Implementing such

2Assuming, of course, they play optimally.

5



an algorithm. Interestingly, this "flawed" decision making will also make the AI seem
more approachable, and human-like, instead of an always-correct machine.

8.1 Benchmarks
For the purpose of highlighting the various differences changing the parameters described,
benchmarks has been logged and ordered. Unless otherwise specified, the AI is set to run the
Minimax algorithm with alpha-beta pruning, with a search depth of 4.

8.1.1 Algorithm variation

The Minimax algorithm and its alpha-beta variation offers no difference in terms of the quality
of its output, as both the original Minimax and Alpha-Beta performed identically in terms of
score. The time between each AI’s move was drastically different however.

We put two AI’s up against one another, with the only difference being their algorithm imple-
mentation.

How much faster is Alpha-Beta pruning? (ms)
Depth level: Minimax Alpha-beta Percentile difference

1 5,84 4,35 25,51%
2 15,57 7,0 55,04%
3 71,42 24,57 65,59%
4 256,0 70,27 72,55%
5 820,0 158,26 80,69%
6 4211,05 537,0 87,24%
7 17322,14 1393,07 91,95%

Table 1: Table showcasing the percentile difference between Minimax and Minimax with
Alpha-Beta pruning.

Table 1 highlights the performance difference between the two algorithms. Note that the times
are averages over the course of one game. This means that as the game goes one, certain pits
become empty of stones, and thus can be immediately disqualified from the list of available
pits.

8.1.2 Search depth

Changing the search depth is one of the simplest methods of changing the AI’s behaviour. For
a search depth of 1, the AI will only look one step ahead for its options. While it will correctly
scrap the paths that will not be beneficial and pick a path where it gets a point, it might not be
the best path. The deeper the search, the better the AI is able to discern which paths return the
best score

This is the key difference between a search depth of 1 and, say, 4. We were not able to generate
a game in which the AI with a search depth of 4 lost a game, as it would always choose the
much more beneficial path.

6



8.1.3 Initial turn

As previously mentioned, whichever party starts has the option of winning if they perform
perfectly. This hypothesis is confirmed in the works of Carstensen and Larsen[3] and Irving,
Donkers and Uiterwijk[2], and highlighted in figure 3.

Figure 3. Matrix detailing outcome of various initial states for Kalaha. Note the bottom row
with 6 pits for each player. Source: Solving (6,6) Kalaha (2011)

In all tests conducted, with both players on equal fotting, the initial player always won the
game. Unless the initial player is handicapped in some way, the theory of the always winning
first player holds firm.

8.1.4 Value of paths

Changing the AI’s preferred choice, to instead select the second or third best path immediately
lowered the overall difficulty. It made "mistakes", or suboptimal turns. This resulted in the
human player’s perception of a more lenient opponent. Still, with a search depth of 4, and the
alpha-beta pruning, the AI was admittedly much faster and could still walk in circles around
the human player.

9 Comments & Conclusion
Over the course of the project, various implementations and structures were discussed, both in
relation to the program’s overall structure, as well as the handling of various attributes. Through
meticulous discussions in group, and in cooperation with TA’s, the end result was established.

However, a number of changes could have been made to better the programs functionality, and
results. These are:

• At the current time, the heuristic evaluation function does not take the step cost into
consideration, one of many factors left out. Expanding the heuristic evaluation function
by combining additional functions and aspects of the game into the evaluation would
provide a more game aware agent.

• The game’s logic was originally intended to have an object oriented approach. However,
this was scrapped for a more simplistic version, as the number of variables proved too
insurmountable to keep track of during development. A better structure of the code would
be preferable for future iterations.

7



• The Monte Carlo tree search algorithm is arguably the better option for this sort of task.
Thus, future iterations should strive towards implementing a new agent based on this.

• We believe that the focus on a array-oriented data structure proved to be the most optimal,
and obvious. The entirety of the game state can be held within the minuscule structure,
allowing for easy data manipulation and debugging.

In conclusion, the report describes a functional implementation of a true Minimax algorithm
with alpha-beta pruning, solving the stated objective of the project.

8



10 Appendix

10.1 Gametree model

Figure 4. Game tree from a random point in a game.

9



Bibliography
[1] Endless Games. Classic Mancala Instructions. URL: https://cn.inside.dtu.

dk / cnnet / filesharing / download / 2ebfdfe3 - 1008 - 49f9 - 80ba -
4b14509aa246. Published 2015, accessed on the 2nd of March, 2019.

[2] Geoffrey Irving, Jeroen Donkers, and Jos Uiterwijk. “Solving Kalah”. In: ICGA journal
23 (May 2003). DOI: 10.3233/ICG-2000-23303.

[3] Anders Carstensen & Kim S. Larsen. Solving (6,6)-Kalaha. URL: http://kalaha.
krus.dk/. Published on the 14th of April, 2011.

10

https://cn.inside.dtu.dk/cnnet/filesharing/download/2ebfdfe3-1008-49f9-80ba-4b14509aa246
https://cn.inside.dtu.dk/cnnet/filesharing/download/2ebfdfe3-1008-49f9-80ba-4b14509aa246
https://cn.inside.dtu.dk/cnnet/filesharing/download/2ebfdfe3-1008-49f9-80ba-4b14509aa246
https://doi.org/10.3233/ICG-2000-23303
http://kalaha.krus.dk/
http://kalaha.krus.dk/

	0.1 GitHub Repository
	1 Game Rules
	2 Chosen Game
	3 State Space
	4 Game Elements
	5 Game Representation
	6 Methods & Algorithms
	7 Heuristics or Evaluation Functions
	7.1 Winner Or Loser Heuristic
	7.2 Maximise Point Difference Heuristic
	7.3 Sum Difference Heuristic
	7.4 Evaluation of heuristics

	8 Parameter Adjustment
	8.1 Benchmarks
	8.1.1 Algorithm variation
	8.1.2 Search depth
	8.1.3 Initial turn
	8.1.4 Value of paths


	9 Comments & Conclusion
	10 Appendix
	10.1 Gametree model

	Bibliography

